Structural comparison of the O4-specific polysaccharides from E. coli O4: K6 and E. coli O4: K52

Barbara Jann a, Alexander S. Shashkov b, Helga Kochanowski a and Klaus Jann a,*

(Received February 12th, 1993; accepted April 27th, 1993)

ABSTRACT

Two distinct forms of the O4 antigen (LPS) from *E. coli* were analysed by ¹H and ¹³C NMR spectroscopy. Both consisted of p-glucose, L-rhamnose, 2-acetamido-2,6-dideoxy-L-galactose (L-FucNAc), and 2-acetamido-2-deoxy-p-glucose. Their structures were found to be

→ 6)-
$$\alpha$$
-D-Glc p -(1 → 3)- α -L-Fuc p NAc-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rhap-(1 → 3)- α -Rhap-(1 →

In the O4-specific polysaccharide from E. coli O4:K3, O4:K6, and O4:K12, X is α -D-Glcp. In the O4 specific polysaccharide from E. coli O4:K52, the rhamnose residue is not substituted (X = H).

INTRODUCTION

The O antigens of Escherichia coli are lipopolysaccharides (LPS) which consist of a lipid moiety (lipid A), an oligosaccharide region (core), and a polysaccharide moiety. The latter expresses the serological O-specificity of the bacteria and is termed the O-specific polysaccharide^{1,2}. Over 150 distinct E. coli O groups are known today which are defined by the epitope structure of the respective O antigens (LPS). It was found that some O groups of E. coli can be further divided into subgroups³⁻⁶. We have recently elucidated the structures of three O1 antigens and four O18 antigens⁷⁻¹⁰. In a comparative NMR study, we obtained evidence for the structural identity of the O4-specific polysaccharides from E. coli strains O4:K3, O4:K6, and O4:K12 with that from an unidentified E. coli O4 which had been published previously¹¹. The NMR data for the O-specific polysaccharide from E. coli O4:K52 were, however, indicative of structural differences. These data showed also that the O4 antigen of E. coli occurs in more than one structural

^a Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg (Germany)

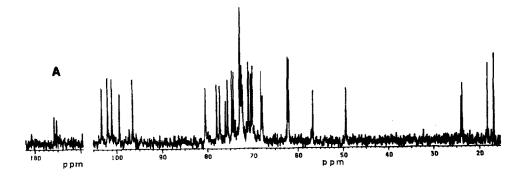
^b N.D. Zelinsky Institute for Organic Chemistry, Moscow (Russian Federation)

^{*} Corresponding author.

version. Here we report the structural elucidation of the O4-specific polysaccharide from *E. coli* O4:K52. Since the published NMR data of the O4-specific polysaccharide¹¹ were incomplete, we also present the complete signal assignments of the O4-specific polysaccharide from *E. coli* O4:K6.

RESULTS AND DISCUSSION

Isolation and characterisation of the O-specific polysaccharides from E. coli strains O4:K3, O4:K6, O4:K12, and O4:K52.—The LPS were obtained by extraction of the bacteria with aqueous 45% phenol and subsequent ultracentrifugation of the materials from the aqueous phase 12. The O4 polysaccharides, as obtained from the sedimented LPS by mild acid degradation, were purified by gel permeation chromatography on Sephadex G-50. They were eluted with water immediately after the void volume (K_D 0.9–0.95). The chromatographed materials did not contain undegraded LPS, as shown by ultracentrifugation (no pellet obtained) and by the absence of fatty acids.


The polysaccharides consisted of glucose, rhamnose, 2-acetamido-2-deoxyglucose (GlcNAc), and 2-acetamido-2,6-dideoxygalactose (FucNAc) in the molar ratios shown in Table I. Table I also shows the effect of periodate oxidation on these polysaccharides. The polysaccharide from E. coli O4: K52 had one glucose less than the others. Periodate oxidation destroyed both glucose residues in the polysaccharides from strains O4: K3, O4: K6, and O4: K12, whereas it destroyed the glucose and rhamnose residues in the polysaccharide from E. coli O4: K52.

The 13 C NMR spectra of the polysaccharides from *E. coli* O4: K3, O4: K6, and O4: K12 were identical (Fig. 1A). Their region of anomeric carbons contained five signals (δ 103.15, 101.8, 100.9, 99.3, and 96.4). The polysaccharide from *E. coli* O4: K52 exhibited a 13 C NMR spectrum (Fig. 1B) with four signals in the region of anomeric carbons (δ 103.8, 101.8, 100.5, and 99.3). All spectra contained signals indicative of C-6 methyl groups (δ 16.6–17.9), acetamido groups (δ 23.7–24.0; 175.1–175.7), and signals of two *N*-linked carbon atoms (δ 49.3–57.0). These data

TABLE I Composition of the polysaccharides from E. coli O4:K6 and O4:K52 before (PS) and after (PS $_{ox}$) periodate oxidation

Polysaccharide	Sugar composition (molar ratio)							
	Glc	Rha	GlcNAc	FucNAc				
O4:K6-PS a	2	1	1	1				
$O4: K6-PS_{ox}^{b}$	0	1	1	1				
O4: K52-PS	1	1	1	1				
O4: K52-PS _{ox}	0	0	1	1				

a,b The same composition was found with the O4 polysaccharide from E. coli O4:K3 and E. coli O4:K12.

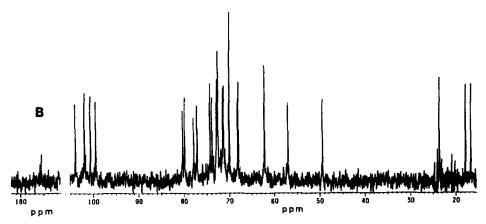


Fig. 1. 75-MHz 13 C NMR spectra (δ 170–182; 15–105) of the O4 polysaccharide from *E. coli* O4:K6 (A) and from *E. coli* O4:K52 (B), recorded in D₂O (90°C) with acetone (δ 31.45) as internal standard.

are in accord with the chemical data and indicate that the O4 polysaccharide from *E. coli* O4: K52 has a tetrasaccharide repeating unit whereas all the others have pentasaccharide repeating units.

NMR analysis of the polysaccharide from E. coli O4:K52.—The ¹H NMR spectrum of the polysaccharide (Fig. 2A) contained two signals for α -anomeric protons in the gluco/galacto configuration (δ 4.97–4.95; $J_{1,2}$ 4 Hz), one signal for α β -anomeric proton in the gluco/galacto configuration (δ 4.59; $J_{1,2}$ 8 Hz), and one signal for a proton in the manno configuration (δ 4.87; $J_{1,2}$ < 2 Hz). Further signals were present, indicative of the methyl groups from acetamido substituents (δ 1.98 and 1.96) and from 6-deoxy sugars (δ 1.22 and 1.15). Assignments of the signals (Table II) were obtained using 2D COSY, one- and 2-step H-relayed coherence transfer (COSYRCT) 2D spectra^{13,14}. The visual multiplicities and coupling constants of the signals were determined with the help of 1D homonuclear double resonance in the difference mode¹⁵.

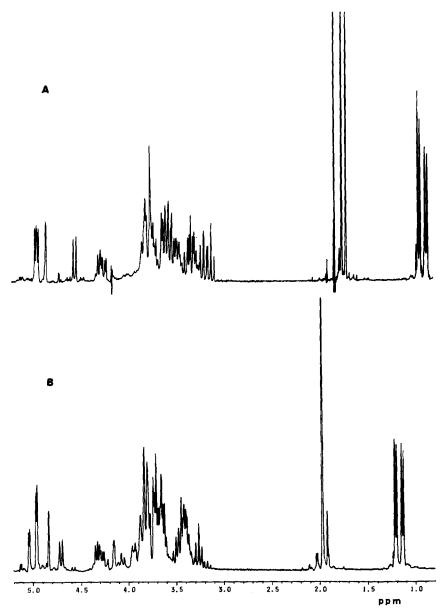


Fig. 2. 300-MHz ¹H NMR spectra of the O4 polysaccharides from *E. coli* O4:K52 (A) and from *E. coli* O4:K6 (B), recorded in D_2O (90°C) with acetone (δ 2.225) as internal standard.

The sequence and types of substitution were determined using a series of NOE experiments with pre-irradiation of the anomeric protons (Table III). Since the signals of the anomeric protons from units A and B overlapped, they were pre-irradiated simultaneously. This resulted in four main peaks in the difference

TABLE II

Assignments of the signals in the ¹H and ¹³C NMR spectra of the polysaccharide from E. coli O4:K52

Residue	Proton	δ (ppm)	Visible multiplicity	Coupling		Carbon	δ (ppm)	$J_{\text{C-1,H-1}}$ (Hz)
				$\overline{J_{ m H,H}}$	Hz			
\rightarrow 6)- α -D-Glc p -(1 \rightarrow	H-1	4.97	d	J _{1,2}	4.0	C-1	101.8	170
(4)	H-2	3.44	dd	$J_{2,3}^{1,2}$	9.5	C-2	72.75	
(A)	H-3	3.67	t	$J_{3,4}$	9.5	C-3	74.2	
	H-4	3.32	t	$J_{4,5}$	9.5	C-4	71.2	
	H-5	3.82	ddd	$J_{5,6a}$	2.5	C-5	72.5	
	H-6a	3.91	dd	$J_{6a,6b}$	11.5	C-6	68.05	
	H-6b	3.57	dd	$J_{5,6b}$	5.0			
\rightarrow 3)- α -L-Fuc pNAc-(1 \rightarrow	H-1	4.95	d	$J_{1,2}$	4	C-1	99.3	172
(7)	H-2	4.30	dd	$J_{2,3}^{1,2}$	10.5	C-2	49.4	
(B)	H-3	3.87	dd	$J_{3,4}^{2,3}$		C-3	77.8	
	H-4	3.84	bd	$J_{4,5}^{5,7}$	< 2.0		72.55	
	H-5	4.35	bq	$J_{5,6}$		C-5	68.05	
	H-6	1.15	d	5,0		C-6	16.6	
\rightarrow 3)- β -D-Glc pNAc-(1 \rightarrow	H-1	4.59	d	$J_{1,2}$	8.0	C-1	103.8	163
(6)	H-2	3.82	dd	$J_{2,3}^{1,2}$	10.0	C-2	57.0	
(C)	H-3	3.64	t	$J_{3,4}^{2,3}$		C-3	80.3	
	H-4	3.47	t	$J_{4,5}$		C-4	70.0	
	H-5	3.39	ddd	$J_{5,6a}$	3.0	C-5	77.05	
	H-6a	3.86	dd	$J_{6a,6b}$	12.3	C-6	62.2	
	H-6b	3.71	dd	$J_{5,6b}$	5.5			
\rightarrow 2)- α -L-Rha p -(1 \rightarrow	H-1	4.87	d	$J_{1,2}$	< 2.0	C-1	100.5	173
	H-2	3.90	dd	$J_{2,3}^{1,2}$		C-2	79.8	
(D)	H-3	3.71	dd	$J_{3,4}^{2,3}$		C-3	71.4	
	H-4	3.25	t	$J_{4,5}^{3,4}$		C-4	73.8	
	H-5	3.59	dq	$J_{5,6}$		C-5	70.0	
	H-6	1.22	ď	3,0		C-6	17.9	

NOE spectrum. Two of them were due to H-2 of both units (α -configurations) and the others were attributed to 3-linkages (A to B and B to C).

The signals of the ¹³C NMR spectrum (Fig. 1B) were assigned (Table II) with a 2D heteronuclear COSY spectrum. The absolute configurations of the sugar units were calculated from the glycosylation effects¹⁶, with L-rhamnose as a basis, as derived from its reactivity with L-rhamnose isomerase.

The results obtained allow the formulation of the O4-specific polysaccharide from E. coli O4: K52 as 1.

6)-
$$\alpha$$
-D-Glc p -(1 \rightarrow 3)- α -L-Fuc p NAc-(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow 2)- α -L-Rha p -(1 \rightarrow

NMR analysis of the O-specific polysaccharide from E. coli O4:K6.—The ¹H NMR spectrum of the polysaccharide from E. coli O4:K6 (Fig. 2B) had, in the region of anomeric protons, one signal more (δ 5.05; $J_{1,2}$ 3.5 Hz) than that of the

NOE observed on		Preirradiated proton						
Residue	Proton	A, H-1 and B, H-1	C, H-1	D , H-1				
\rightarrow 6)- α -D-Glc p -(1 \rightarrow	H-2	+						
(4)	H-3	$(+)^b$						
(A)	H-5, H-6a			+				
	H-6b			+				
\rightarrow 3)- α -L-Fuc pNAc-(1 \rightarrow	H-2	+						
(B)	H-3	+						
	H-4	$(+)^b$						
\rightarrow 3)- β -D-Glc pNAc-(1 \rightarrow	H-2		+					
(5)	H-3	+	+					
(C)	H-4		$(+)^b$					
	H-5		+					
\rightarrow 2)-α-L-Rha p -(1 \rightarrow	H-2		+	+				
(D)	H-3			$(+)^b$				

TABLE III

NOE data ^a for the O4 polysaccharide from E. coli O4:K52

polysaccharide from $E.\ coli\ O4:K52$. This was due to an α -anomeric proton in the gluco/galacto configuration. The signals due to the methyl groups (of two 6-deoxy sugars, and of two acetamido groups) were the same as those in the spectrum of the polysaccharide from $E.\ coli\ O4:K52$. The signal assignments from the ¹H NMR spectrum and from the ¹³C NMR spectrum (Table IV) were obtained as described for the polysaccharide from $E.\ coli\ O4:K52$. The results of the sequence analysis are shown in Table 5. Calculation of the glycosylation effects ¹⁶ defined the absolute configurations as D-Glcp, L-Rhap, L-FucpNAc, and D-GlcpNAc. These results showed that the polysaccharide from $E.\ coli\ O4:K6$ has structure 2

→ 6)-
$$\alpha$$
-D-Glc p -(1 → 3)- α -L-Fuc p NAc-(1 → 3)- β -D-Glc p NAc-(1 → 2)- α -L-Rha p -(1 → 3) \uparrow 1 α -D-Glc p

Structure 2 is identical with the published structure of the O4 polysaccharide¹¹, which was probably from E. coli O4: K3, O4: K6, or O4: K12.

The O4 antigen is yet another case in which an *E. coli* O antigen is represented by more than one LPS structure. The O1-antigenic (L)PS differed in the nature and sequence of the residues in the main chain^{8,9}, whereas the O18-antigenic

^a The test was performed using standard Bruker software NOEMULT. ^b Small signal due to spin diffusion.

TABLE IV
Assignments of the signals in the ¹H and ¹³C NMR spectra of the polysaccharide from E. coli O4:K6

Residue	Proton δ (δ (ppm)	Visible multiplicity	Coupling		Carbon	δ (ppm)	J _{C-1,H-1} (Hz)
				$\overline{J_{ m H,H}}$	Hz			
\rightarrow 6)- α -D-Glc p -(1 \rightarrow	H-1	4.97	d	$J_{1,2}$	3.5	C-1	101.8	172
(A)	H-2	3.43	dd	$J_{2,3}$	9.5	C-2	72.8	
(A)	H-3	3.66	t	$J_{3,4}$	9.5	C-3	74.2	
	H-4	3.37	t	$J_{4,5}$	9.5	C-4	70.9	
	H-5,6a	3.83	m			C-5	72.4	
	H-6b	3.65				C-6	67.8	
\rightarrow 3)- α -L-Fuc pNAc-(1 \rightarrow	H-1	4.97	d	$J_{1,2}$	3.5	C-1	99.3	172
(n)	H-2	4.29	dd	$J_{2,3}^{2,2}$	10.0	C-2	49.35	
(B)	H-3	3.86	dd	$J_{3,4}^{2,3}$		C-3	77.9	
	H-4	3.81	bd	$J_{4,5}$	< 2.0		72.5	
	H-5	4.34	bq	$J_{5,6}$	6.5	C-5	68.1	
	H-6	1.15	đ	,-		C-6	16.6	
\rightarrow 3)- β -D-Glc pNAc-(1 \rightarrow	H-1	4.71	đ	$J_{1,2}$	8	C-1	103.15	163
(a)	H-2	3.84	dd	$J_{2,3}^{1,2}$	9	C-2	56.7	
(C)	H-3	3.51	t	$J_{3,4}^{2,3}$	9	C-3	80.4	
	H-4	3.45	t	$J_{4,5}^{5,4}$	9	C-4	70.1	
	H-5	3.37	m	74.0		C-5	77.2	
	H-6a	3.88				C-6	62.2	
	H-6b	3.68						
-2)-α-L-Rha p-(1 →	H-1	4.84	bs	$J_{1,2}$	< 2.0	C-1	100.9	174
3	H-2	4.16	bd	$J_{2,3}^{1,2}$		C-2	75.5	***
1	H-3	3.82	dd	$J_{3,4}^{2,3}$		C-3	76.0	
(D)	H-4	3.27	t	$J_{4,5}$		C-4	72.2	
,	H-5	3.65	dq	$J_{5,6}$		C-5	70.4	
	H-6	1.22	ď	2,0		C-6	17.9	
α -D-Glc p -(1 \rightarrow	H-1	5.05	d	$J_{1,2}$	3.5	C-1	96.5	169
a.p.otop-(1	H-2	3.63	dd	$J_{2,3}^{2,2}$		C-2	72.8	
(E)	H-3	3.74	t	$J_{3,4}^{2,3}$		C-3	74.6	
	H-4	3.42	t	$J_{4,5}^{2,4}$	9.5	C-4	71.0	
	H-5	3.95	ddd	$J_{5,6a}$	2.5	C-5	72.85	
	Н-ба	3.76	dd	J _{5,6b}	4.5	C-6	62.0	
	H-6b	3.69	dd	$J_{6a,6b}$	12.5			

(L)PS showed only small linkage difference between the residues in the main chain and had additional differences in glucosyl substitution of the main chain¹⁰. The two O4 antigens presented here differ only in glucosyl substitution. This may be due to the absence of a glucosyl transferase in *E. coli* O4: K52, reminiscent of the oaf gene product (glucosyl transferase) described in *Salmonella*¹⁷⁻¹⁹. In such a case, the genetic differences between the two types of *E. coli* O4 would not reside in different *rfb* allels but would be due to the mutation of a gene outside the *rfb*

NOE observed on	Preirradiated proton						
Residue	Proton	A, H-1 and B, H-1	C, H-1	D , H-1	E, H-1		
\rightarrow 6)- α -D-Glc p -(1 \rightarrow	H-2	+					
(4)	H-3	$(+)^b$					
(A)	H-5, H-6a			+			
	H-6b			+			
\rightarrow 3)- α - L -Fuc p NAc- $(1 \rightarrow$	H-2	+					
(m)	H-3	+					
(B)	H-4	$(+)^b$					
\rightarrow 3)- β -D-Glc pNAc-(1 \rightarrow	H-2		+				
	H-3	+	+				
(C)	H-4		$(+)^b$				
	H-5		+				
\rightarrow 2)- α -L-Rha p -(1 \rightarrow	H-2		+	+	+		
3 ↑	H-3			$(+)^b$	+		
1				,			
(D)							
α -D-Glc p -(1 \rightarrow	H-2				+		
(E)							

TABLE V
NOE data ^a for the O4 polysaccharide from E. coli O4:K6

locus. The fact that both LPS reported here function as O4 antigens shows that the side-chain glucose plays no role in the O4 epitope.

EXPERIMENTAL

Bacteria and cultivation.—E. coli strains² U4-41 (O4: K3: H5), SH-1 (O4: K6: H5), Su 65-42 (O4: K12: H⁻), and A 103 (O4: K52: H⁻) were used. Strain SH-1 has been used extensively for genetic work and was described previously 20,21 . The bacteria were grown to the stationary phase (ca. 5 h) in 14-L batch cultures at 37°C in a medium containing, per L, tryptone (7.5 g), yeast extract (10 g), D-glucose (10 g), NaCl (3 g), Na₂HPO₄ · 12H₂O (8 g), MgSO₄ · 7H₂O (0.2 g), and poly(ethylene glycol) (0.3 g). D-Glucose and magnesium sulfate were sterilised separately. At the end of the cultivation, the bacteria were killed with phenol (1% final concentration) and harvested by centrifugation.

Isolation and characterisation of the lipopolysaccharides and preparation of the polysaccharides.—The LPS were isolated from the bacteria with aq 45% phenol at 65°C (10 min) and the material obtained from the aqueous phase was purified by repeated ultracentrifugation as described¹². The polysaccharides were obtained

^a The test was performed using standard Bruker software NOEMULT. ^b Small signal due to spin diffusion.

from the LPS by hydrolysis in aq 1% acetic acid (100°C, 90 min) and purified by chromatography on Sephadex G-50²².

Analytical procedures.—Rhamnose, glucose, and galactose were determined as their alditol acetates by gas-liquid chromatography (GLC) on ECNSS-M at 170°C, and glucosamine and fucosamine were determined²³ as alditol acetates by GLC on PolyA103 at 220°C. The absolute configuration of rhamnose was determined with the L-Rha specific rhamnose isomerase²⁴.

NMR spectroscopy. — ¹H NMR and ¹³C NMR spectra were recorded with a Bruker AM-300 spectrometer at 90°C in D_2O , using acetone (δ_H 2.225; δ_C 31.45) as the internal standard. Homonuclear 2D COSY spectra, H-relayed H,H-COSY spectra (one- and two-step), and heteronuclear ¹³C/¹H-COSY spectra were obtained by using standard Bruker software for ASPECT 2000 (COSYHG, COSYRCT, COSYRCT2, and XHCORRD, respectively). NOE experiments were performed in the truncated driven (TOE) mode²⁵ with the Bruker NOEMULT program. The relaxation delay was 1 s, the irradiation time of every component of multiplets (D_2) was 0.1 s, and the total preirradiation time of whole multiplets was 1.0–1.2 s.

ACKNOWLEDGMENTS

We thank Dr. W.-D. Fessner (Universität Freiburg) for a gift of L-rhamnose isomerase. This work was in part supported by the Deutsche Forschungsgemeinschaft (to A.S.S.).

REFERENCES

- 1 K. Jann and B. Jann, in E.T. Rietschel (Ed.), Handbook of Endotoxin, Vol. 1, Chemistry of Endotoxin, Elsevier, Amsterdam, 1984, pp 138-186.
- 2 I. Ørskov, F. Ørskov, B. Jann, and K. Jann, Bacteriol. Rev., 41 (1977) 667-710.
- 3 K. Jann and B. Jann, Curr. Top. Microbiol. Immunol., 150 (1990) 19-42.
- 4 M. Achtman, A. Mercer, B. Kusecek, A. Pohl, M. Heuzenroeder, W. Aaronson, A. Sutton, and R.P. Silver, *Infect. Immun.*, 39 (1983) 315-335.
- 5 B. Kusecek, H. Wloch, A. Mercer, V. Vaisanen, G. Pluschke, T. Korhonen, and M. Achtman, Infect. Immun., 43 (1984) 368-379.
- 6 A. Moll, B. Kusecek, G. Pluschke, G. Morelli, M. Kamke, B. Jann, K. Jann, and M. Achtman, Infect. Immun., 53 (1986) 257-263.
- 7 D.S. Gupta, B. Jann, and K. Jann, Infect. Immun., 45 (1984) 203-209.
- 8 B. Jann, A.S. Shashkov, D.S. Gupta, and K. Jann, Eur. J. Biochem., 210 (1992) 242-248,
- B. Jann, A.S. Shashkov, D.S. Gupta, S.M. Panasenko, and K. Jann, Carbohydr. Polym., 18 (1992) 51-57.
- 10 D.S. Gupta, A.S. Shashkov, B. Jann, and K. Jann, J. Bacteriol., 174 (1992) 7963-7970.
- 11 P.-E. Jansson, B. Lindberg, M. Ogunlesi, S.B. Svenson, and G. Wrangsell, Carbohydr. Res., 134 (1984) 283-291.
- 12 O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-91.
- 13 J. Jeener, B.H. Meier, P. Bachmann, and E.E. Ernst, J. Chem. Phys., 71 (1979) 4546-4553.
- 14 J. Dabrowski, Methods Stereochem. Anal., 9 (1987) 349-386.
- 15 N.A. Kocharova, Y.A. Knirel, A.S. Shashkov, N.K. Kochetkov, and G.B. Pier, J. Biol. Chem., 263 (1988) 11291–11295.

- 16 G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, Carbohydr. Res., 175 (1988) 57-75.
- 17 B.A.D. Stocker and P.H. Mākelā, in G. Weinbaum, S. Kadis, and S.J. Ajl (Eds.), *Bacterial Endotoxins*, Academic, New York, Vol. 4, 1971, pp. 369-433.
- 18 K. Nikaido and H. Nikaido, J. Biol Chem., 246 (1971) 3912-3919.
- 19 H. Nikaido, K. Nikaido, T. Nakae, and P.H. Mãkelã, J. Biol. Chem., 246 (1971) 3902-3911.
- 20 S.I. Hull, R.A. Hull, B.H. Minshew, and S. Falkow, J. Bacteriol., 151 (1982) 1006-1012.
- 21 G.H. Haraguchi, U. Zähringer, B. Jann, K. Jann, R.A. Hull, and S.I. Hull, Microb. Pathogen., 10 (1991) 351-361.
- 22 B. Jann, K. Reske, and K. Jann, Eur. J. Biochem., 60 (1975) 239-246.
- 23 W. Niedermayer and M. Thomana, Anal. Biochem., 57 (1974) 363-368.
- 24 D.M. Wilson and S. Ajl, J. Bacteriol., 73 (1957) 410-414.
- 25 G. Wagner and K. Wüthrich, J. Magn. Reson., 33 (1979) 675-680.